Какие стратегии подбора гиперпараметров вы знаете?
Можно назвать три стратегии:
✔️Grid Search При таком подходе для каждого гиперпараметра пользователю необходимо вручную указать список значений, которые алгоритм сможет опробовать. Далее модель обучается, используя каждую комбинацию гиперпараметров, и возвращает комбинацию, которая даёт оптимальный результат. Этот подход может быть довольно затратным в вычислительном отношении. ✔️Случайный поиск Этот подход похож на Grid Search, но отличается тем, что вместо указания того, какие значения следует проверять для каждого гиперпараметра, даётся верхняя и нижняя граница значений для каждого гиперпараметра. Затем с равномерной вероятностью выбираются случайные значения в пределах этих границ. Далее пользователю возвращается лучшая комбинация. ✔️Байесовская оптимизация Этот подход основан на теореме Байеса. Эта теорема описывает вероятность наступления события на основе имеющейся информации. При Байесовской оптимизации строится вероятностная модель из набора гиперпараметров, который оптимизирует определённый показатель. Также используется регрессионный анализ для итеративного выбора наилучшего набора гиперпараметров.
Какие стратегии подбора гиперпараметров вы знаете?
Можно назвать три стратегии:
✔️Grid Search При таком подходе для каждого гиперпараметра пользователю необходимо вручную указать список значений, которые алгоритм сможет опробовать. Далее модель обучается, используя каждую комбинацию гиперпараметров, и возвращает комбинацию, которая даёт оптимальный результат. Этот подход может быть довольно затратным в вычислительном отношении. ✔️Случайный поиск Этот подход похож на Grid Search, но отличается тем, что вместо указания того, какие значения следует проверять для каждого гиперпараметра, даётся верхняя и нижняя граница значений для каждого гиперпараметра. Затем с равномерной вероятностью выбираются случайные значения в пределах этих границ. Далее пользователю возвращается лучшая комбинация. ✔️Байесовская оптимизация Этот подход основан на теореме Байеса. Эта теорема описывает вероятность наступления события на основе имеющейся информации. При Байесовской оптимизации строится вероятностная модель из набора гиперпараметров, который оптимизирует определённый показатель. Также используется регрессионный анализ для итеративного выбора наилучшего набора гиперпараметров.
#junior #middle
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%.
Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time.
Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.
What Is Bitcoin?
Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.
Библиотека собеса по Data Science | вопросы с собеседований from tw